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Transition from convective to absolute instability in Rayleigh–Bénard convection in
the presence of a uni-directional Poiseuille flow is studied. The evaluation of the long-
time behaviour of the Green function in the horizontal plane allows the determination
of regions of convective and absolute instability in the Rayleigh–Reynolds number
plane as a function of Prandtl number. It is found that the mode reaching zero
group velocity at the convective–absolute transition always corresponds to transverse
rolls, while the system remains convectively unstable with respect to pure streamwise
(longitudinal) rolls for all non-zero Reynolds numbers. Finally, the roll pattern within
the entire wave packet and in particular near its centre is elucidated and possible
connections between experiments and our findings are discussed.

1. Introduction
The present study takes a closer look at the transition from convective to abso-

lute instability of a Rayleigh–Bénard cell with a superimposed plane Poiseuille flow
(henceforth abbreviated as the RBP system). The concept of convective and absolute
instability, originally introduced by Briggs (1964) and applied to hydrodynamic in-
stabilities by Huerre & Monkewitz (1985), among others, has often a direct bearing
on the manifestation of an instability. In short, the concept is based on the long-time
behaviour of the impulse response at a fixed spatial location: if it decays, the flow
is stable or convectively unstable; if it is unbounded (within the context of linear
theory), one speaks of absolute instability. As a consequence, a convective instability
needs to be excited continuously to remain manifest at a fixed location, thus making
the resulting perturbation in general excitation dependent. In an absolutely unstable
flow, on the other hand, different initial excitations normally lead to the same intrin-
sic perturbation pattern at any fixed location. Since the primary instability in pure
Rayleigh–Bénard (RB) convection is known to be absolute and pure plane Poiseuille
flow is convectively unstable (Deissler 1987), it is expected that the nature of the
instability in the mixed flow depends on the value of the three control parameters:
the Rayleigh number (R), Reynolds number (R) and Prandtl number (P ). This sys-
tem is therefore of interest for future experimental studies aimed at elucidating the
physical manifestations of the convective–absolute transition in systems with two
wave-propagation directions.

At this point, we briefly recall the salient features of the RBP stability problem
which trivially reduces to the classical Rayleigh–Bénard problem for zero Reynolds
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number and to the Orr–Sommerfeld problem for zero Rayleigh number. In both limit
cases, the classical stability boundary is defined in a space of only two parameters:
the Rayleigh or Reynolds number and a single wavenumber because the RB problem
is invariant with respect to rotations in the horizontal plane and the Orr–Sommerfeld
problem can be Squire transformed. The linear stability of the mixed RBP system was
first investigated by Gage & Reid (1968). In this case, the stability properties depend
in general on five parameters:R, R, P and the two components a (in the flow direction
x) and b (in the transverse direction y) of the wavevector. Inspection of the governing
equations shows that simplifications arise for wave vectors orthogonal to the mean
flow direction, as the stability boundary for these so-called longitudinal rolls (LRs) is
independent of the Reynolds number. In other words, the critical parameters for LRs
are the same as in the RB problem, namely Rc = R(RB)

c ≈ 1707.76 and bc ≈ 3.116.
For oblique rolls, Gage & Reid (1968) have devised a Squire-type transformation
which allows an analysis of the classical linear RBP stability problem in terms of
LRs and TRs (transverse rolls with wavevector in the mean flow direction) alone.
More recently, Müller (1990) and Müller, Lücke & Kamps (1992) have analysed TRs
for small Reynolds numbers using an expansion in powers of R2. Their main results
are that the TRs become travelling rolls for non-zero R and that the increase of
the critical Rayleigh number beyond R(RB)

c is proportional to R2 with a complicated
dependence of the coefficient on P . Although we will focus in this paper on low
Reynolds numbers of O(10) at most, we mention in passing the results of Fujimura
& Kelly (1995) at high Reynolds numbers who documented the appearance of a
transverse Tollmien–Schlichting mode for R > 140 (at P = 1). In summary, the
linear stability analyses have established that, for non-zero Reynolds number and
fixed values of the Rayleigh and Prandtl numbers, LRs exhibit the highest temporal
growth rate, while flow stabilizes the travelling TRs. A detailed review of the problem
has recently been given by Kelly (1994).

From the above result it is usually concluded that longitudinal roll patterns are
preferred in supercritical mixed convection. In many experimental studies (Akiyama,
Hwang & Cheng 1971; Ostrach & Kamotani 1975; Fukui, Nakajima & Hueda 1983,
for instance) supercritical longitudinal rolls have indeed been observed. However,
some authors also reported observing transverse rolls (Luijkx, Platten & Legros 1981;
Ouazzani et al. 1989; Ouazzani, Platten & Mojtabi 1990) depending on the values of
the Rayleigh number and (low enough) Reynolds number. One possible explanation
is the convective–absolute transition referred to above. To our knowledge, only a
few studies have addressed this transition of the RBP system using one-dimensional
envelope equations. In particular, the transition from convective to absolute instability
for TRs has been found (Müller et al. 1992) to be distinct from the stability boundary.
This means for instance that, when the Rayleigh number is increased at a fixed
Reynolds number, there exists a finite interval of R for which the RBP system is
convectively unstable before it becomes abolutely unstable.

Using a set of two coupled envelope equations for TRs and LRs, convective–
absolute transitions have been predicted for both roll orientations at different values
of the critical parameters (Brand, Deissler & Ahlers 1991; Müller, Tveitereid &
Trainoff 1993; Tveitereid & Müller 1994; Li, Kelly & Hall 1997). While the equations
studied by Brand et al. (1991) are of a generic type, Müller et al. (1993) derived their
equations in a systematic way. Problems arose however with the weakly nonlinear
formulation, since Rc is different for LRs and TRs when R > 0. The problem was
overcome by including lateral free-slip boundaries to push up Rc for the LRs, and
by introducing in a somewhat artificial manner a Reynolds number R? for which
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the critical values of the Rayleigh number are the same for both roll orientations.
This allowed R? to be adjusted such as to reproduce some experimental results of
Ouazzani et al. (1990).

In the present study we analyse the impulse response in the horizontal plane
without restrictions on the wave propagation direction, roll orientation and control
parameters, except for a restriction to low Reynolds numbers in order to avoid dealing
with Tollmien–Schlichting modes. After formulating the problem in § 2, different
solution approaches are discussed in § 3. In § 4, finally, our results are presented and
discussed, in particular the results obtained with an approximate analytic dispersion
relation, the asymptotic impulse response of the RBP system which shows that the
mode with zero group velocity in all horizontal directions is always a TR mode
while LRs never become absolutely unstable, the detailed roll pattern within the wave
packet and a discussion of the relation of our results to various experiments.

2. Formulation of the problem
We consider a fluid layer of depth h in the vertical z-direction, with z = 0 at the

centre of the layer and gravity pointing in the negative z-direction, and of infinite
extent in the horizontal (x, y)-plane. In the following, we assume that the horizontal
walls bounding the fluid are differentially heated so that the temperature is T0 +δT/2
and T0 − δT/2 (δT > 0) at the lower and upper walls respectively. Furthermore, we
assume that a mean pressure gradient in the x-direction is maintained in the fluid
layer. With the usual Boussinesq approximations, this problem of mixed convection
is governed by

∇ ·U = 0, (2.1a)

∂U

∂t
+U · ∇U +

1

ρ0

∇Π − α0(T − T0)gez − ν0∇2U = 0, (2.1b)

∂T

∂t
+U · ∇T −K0∇2T = 0, (2.1c)

where ez is the unit vector in the z-direction and U , Π and T are the velocity, the
deviation from the hydrostatic pressure corresponding to a uniform density ρ0 and
the temperature fields respectively. The physical constants ρ0 (density), α0 (thermal
expansion coefficient), g (gravitational acceleration), ν0 (kinematic viscosity), and K0

(thermal diffusivity) are assumed to be constant. The boundary conditions at the
horizontal walls are

U = 0 at z = ± 1
2
h, (2.2a)

T = T0 ∓ 1
2
δT at z = ± 1

2
h. (2.2b)

A steady basic solution of the problem is easily found as a combination of a plane
Poiseuille flow and a vertical thermal stratification, i.e.

U b = U0 Ub(z) ex = U0

(
1− 4

(z
h

)2
)
ex, (2.3a)

Tb = T0 − δT z

h
, (2.3b)

Πb = Π0 − 8
ρ0ν0U0

h

x

h
− 1

2
ρ0α0gδTh

(z
h

)2

, (2.3c)
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where U0, T0, δT and Π0 are externally imposed constants. Experimentally, the
primary control parameters are of course U0 and δT .

Equations governing the linear stability of this RBP system are easily deduced (Gage
& Reid 1968; Kelly 1994) from the set of equations (2.1a–c) by linearizing around the
basic solution (2.3a–c). At the same time we introduce non-dimensional variables by
scaling all coordinates with h, the basic velocity U b by U0, the perturbation velocity
u by K0/h, time by h2/K0, the disturbance temperature by δT and the disturbance
pressure by ρ0ν0K0/h

2:

∇ · u = 0, (2.4a)

P−1 ∂u

∂t
+ R (U b · ∇u+ u · ∇U b) + ∇p−R θ ez − ∇2u = 0, (2.4b)

∂θ

∂t
+ RPU b · ∇θ − u · ez − ∇2θ = 0. (2.4c)

Boundary conditions for u and θ are

u = 0 at z = ± 1
2
, (2.5a)

θ = 0 at z = ± 1
2
. (2.5b)

The three non-dimensional parameters governing the problem are P , the Prandtl
number, the Reynolds number

R =
U0h

ν0

, (2.6a)

and the Rayleigh number

R =
gα0δTh

3

ν0K0

. (2.6b)

While the definition of R is standard in the context of Rayleigh–Bénard convection,
the reader is warned that the Reynolds number is defined differently from most
publications where it is normally based on half the depth and the average velocity
(see Drazin & Reid 1981, for instance).

Taking the double curl of the momentum equation and using (2.4a), one obtains a
set of two coupled equations involving w, the vertical component of the perturbation
velocity u, and the temperature perturbation θ:

−P−1 ∂∇2w

∂t
− R

(
Ub∇2 − d2Ub

dz2

)
∂w

∂x
+R∇2

Hθ + ∇4w =Fw, (2.7a)

∂θ

∂t
+ RPUb

∂θ

∂x
− w − ∇2θ =Fθ, (2.7b)

where ∇2
H is the horizontal Laplacian (in the x, y-plane) and Fw and Fθ are

forcing terms added for later reference. The fourth-order equation for w requires an
additional boundary condition on its vertical derivatives: classically it is deduced from
the continuity equation, leading to the boundary conditions for the above equations:

w =
∂w

∂z
= θ = 0 at z = ± 1

2
. (2.8)

The analysis of the convective and absolute nature of the instability is based on
the study of the linear response of the system to a unit impulse. According to the
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definition, the impulse response satisfies the equations (2.7a, b) forced by

Fw =Fθ = δ(x) δ(y) δ(z − z0) δ(t). (2.9)

Application of Fourier transforms in space x and y as well as in time t, according to

the following definitions for ŵ, ˆ̂w and
ˆ̂
ŵ and analogous definitions for θ̂,

ˆ̂
θ and

ˆ̂
θ̂

ŵ(a, y, z, t; z0) =

∫ +∞

−∞
w(x, y, z, t; z0) exp(−iax) dx, (2.10a)

ˆ̂w(a, b, z, t; z0) =

∫ +∞

−∞
ŵ(a, y, z, t; z0) exp(−iby) dy, (2.10b)

ˆ̂
ŵ(a, b, z, ω; z0) =

∫ +∞

−∞
ˆ̂w(a, y, z, t; z0) exp(iωt) dt, (2.10c)

with a and b the components of the wave vector in the x- and y-directions and
k2 = a2 + b2, leads to the forced equation:

(L1 − iωL2)
ˆ̂
Ŝ = (1, 1)Tδ(z − z0) (2.11a)

for the solution vector
ˆ̂
Ŝ = (

ˆ̂
ŵ,

ˆ̂
θ̂)T , where T denotes the transpose. The two linear

operators are defined as

L1 =

 iaR

[
Ub

(
k2 − d2

dz2

)
+

d2Ub

dz2

]
+

(
k2 − d2

dz2

)2

−k2R

−1 iaRPUb +

(
k2 − d2

dz2

)
 ,

(2.11b)

L2 =

 P−1

(
k2 − d2

dz2

)
0

0 1

 , (2.11c)

and the boundary conditions for the
ˆ̂
ˆ quantities are given by (2.8).

3. Solution methods
3.1. Formal eigenfunction expansion

We expand
ˆ̂
ŵ and

ˆ̂
θ̂ in terms of the infinite set of eigenfunctions

ˆ̂
ŵn(a, b, z) and

ˆ̂
θ̂n(a, b, z) of the homogeneous part of equation (2.11a) corresponding to the eigen-
values ωn(a, b):

ˆ̂
Ŝ =

∑
n

An(a, b, ω; z0)
ˆ̂
Ŝn(a, b, z), (3.1)

The coefficients An are determined in standard fashion. With the usual definition of
the inner product 〈

ˆ̂
Ŝ

∣∣∣∣ ˆ̂
Ŝ ′
〉

=

∫ 1/2

−1/2

ˆ̂
ŜT

ˆ̂
Ŝ ′dz, (3.2)

one first deduces from the homogeneous version of equation (2.11a) and the corre-
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sponding adjoint homogeneous problem for the adjoint eigenvector
ˆ̂
Ŝ?n = (

ˆ̂
ŵ?n ,

ˆ̂
θ̂?n)

T ,
associated with the eigenvalues ωn, the orthogonality relation〈

L2

ˆ̂
Ŝm

∣∣∣∣ ˆ̂
Ŝ?n

〉
= δmn, (3.3)

provided the eigenvectors are normalized according to〈
L2

ˆ̂
Ŝn

∣∣∣∣ ˆ̂
Ŝ?n

〉
=

∫ 1/2

−1/2

[
P−1

(
k2 ˆ̂
ŵn

ˆ̂
ŵ?n +

d
ˆ̂
ŵn

dz

d
ˆ̂
ŵ?n
dz

)
+

ˆ̂
θ̂n

ˆ̂
θ̂?n

]
dz = 1. (3.4)

Multiplying now (2.11a) from the right by
ˆ̂
Ŝ?n and using the above orthonormalization

immediately yields the coefficients of the expansion

An(a, b, ω; z0) =
Fn(a, b, z0)

i (ωn(a, b)− ω)
, (3.5)

where

Fn(a, b, z0) =
ˆ̂
ŵ?n(a, b, z0) +

ˆ̂
θ̂?n(a, b, z0). (3.6)

After solving the problem in Fourier space, we first invert the transform in time by
integrating in the complex ω-plane along a contour L which is a straight line parallel
to the real ω-axis lying above all singularities of the integrand, so as to satisfy the
causality condition (i.e. S(x, y, z, t; z0) = 0 for t < 0). Clearly, the singularities of the
integrand are located at ω = ωn. The integration for t > 0 is performed by closing L
in the lower ω-plane (see e.g. Briggs 1964; Huerre & Monkewitz 1985) and evaluating
residues. Inverting also the two spatial Fourier transforms finally leads to the Green
function in physical space:

S(x, y, z, t; z0) =
1

4π2

∑
n

∫ +∞

−∞

∫ +∞

−∞
Fn(a, b, z0)

ˆ̂
Ŝn(a, b, z)

× exp
(−i (ωn(a, b)t− ax− by)

)
db da, (3.7)

To determine the long-time behaviour of the Green function we use the method of
steepest descent (Huerre & Monkewitz 1990) twice, i.e. in the a-plane and the b-plane,
noting that the integration contours in the two planes are coupled (Brevdo 1991).
This leads to the result that on each ray (x/t=const., y/t=const.) only the mode with
group velocity (x/t, y/t) will survive as t → ∞. With the definitions ω′n = ωn − b y/t
and ω′′n = ω′n − a x/t this corresponds to finding the saddle points

∂ω′n
∂b

(a, b(s)(a)) = 0, (3.8a)

and
∂ω′′n
∂a

(a(s), b(s)(a(s))) = 0, (3.8b)

The surviving mode is given asymptotically by

S(x, y, z, t; z0) ∼ −i

2π t

∑
n

(
∂2ω′n
∂b2

(a(s), b(s)(a(s)))
∂2ω′′n
∂a2

(a(s), b(s)(a(s)))

)−1/2

×Fn(a(s), b(s)(a(s)), z0)
ˆ̂
Ŝn(a

(s), b(s)(a(s)), z) exp
(−iω′′n (a

(s), b(s)(a(s))) t
)
. (3.9)
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The determination of the asymptotic wavepacket represented by (3.9) is thus
reduced to the determination of the complex frequency ω′′n (a(s), b(s)(a(s))) for each
value of (x/t, y/t). Here we must immediately recall the additional so-called pinching
condition for the validity of the above asymptotics (Briggs 1964; Huerre & Monkewitz
(1985); Brevdo 1991; Le Dizès et al. 1996). This condition implies that, as the inversion
contour L in the ω-plane (parallel to the real ω-axis and above all singularities)
is moved down towards the singularity ωn, its images in the complex a- and b-
planes, called spatial branches, must simultaneously pinch the inversion contours
in both planes at a(s) and b(s). In other words, the spatial branches in each of the
two (coupled!) planes must originate (for L high above all singularities) from the
upper and lower half-planes. Otherwise they cannot pinch the inversion contours in
either plane, i.e. force their deformation through the saddle points at a(s) and b(s),
respectively. Furthermore, it must be verified that no singularities arise between the
original inversion contours along the real a- and b-axes and the deformed contours
through the saddle points.

The determination of spatial branches and the associated verification of pinching
requirements in two wavenumber planes for the whole range of x/t and y/t under
consideration is clearly a monumental task. Therefore, the full verification of the
pinching requirements has only been carried out in a few selected cases. However, in
the course of all our saddle point searches, we have not found a case in which the
numerical search has not converged to an acceptable solution, i.e. a solution smoothly
connected in parameter space to a fully verified pinch point. Further confirmation of
the results has been obtained by a direct calculation of the Green function which is
described in § 3.3.

3.2. Numerical implementation of the eigenfunction expansion:
Galerkin/collocation methods

For the practical implementation of the analysis outlined in the previous section, a

standard Galerkin method is used. With basis functions Bw,m(z) and Bθ,m(z),
ˆ̂
ŵn and

ˆ̂
θ̂n are expanded as

ˆ̂
ŵn(a, b, z) =

m=M∑
m=0

Wnm(a, b)Bw,m(z), (3.10a)

ˆ̂
θ̂n(a, b, z) =

m=M∑
m=0

Θnm(a, b)Bθ,m(z). (3.10b)

With Bw,m(z) = (1 − 4z2)2zm, Bθ,m(z) = (1 − 4z2)zm the 1-mode truncation of the
expansions (3.6) with M = 0 yields a surprisingly accurate analytical approximation
of the dispersion relation

D(ω, a, b) = −27

4
k2RP + (7ω − 6aRP + 7if1)

(−f2ω + 2
11
aRPf3 − iPf4

)
= 0, (3.11)

where the f are polynomials of k2 = a2 + b2 defined as

f1(k
2) = k2 + 10, f2(k

2) = k2 + 12,

f3(k
2) = 5k2 + 22, f4(k

2) = k4 + 24k2 + 504. (3.12)

This result represents an extension of the approximate dispersion relation of Man-
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neville (1991) to R > 0 and is of course only valid for the basic roll mode which is
even in z. It will be exploited and compared to Müller’s small-R expansions (Müller
1990; Müller et al. 1992) in § 4. Higher numerical accuracy is achieved with Bw,m(z)
and Bθ,m(z) taken as Chebyshev polynomials Tm(z). The discretized dispersion relation
is obtained using a collocation method. It has the general form analogous to (2.11a)(

L(d)
1 (a, b)− iωn(a, b)L(d)

2 (a, b)
)
S (d)
n (a, b) = 0, (3.13)

where S (d)
n (a, b) is a vector with the 2M components {Wnm(a, b), m = 1, . . .M} and

{Θnm(a, b), m = 1, . . .M}, while L(d)
1 (a, b) and L(d)

2 (a, b) are two 2M × 2M matrices
which depend implicitely on the Rayleigh, Reynolds and Prandtl numbers. For
M = 20, we recover the classical results R(RB)

c = 1707.76 and k(RB)
c = 3.11632.

For each (x/t, y/t) the saddle point (ω′′n
(s), a(s), b(s)) defined by (3.8a, b) is determined

by a Newton method. In most cases, only the lowest mode n = 1 is of interest as
Im (ω′′2 ) < Im (ω′′1 ) (mostly Im (ω′′2 ) < 0).

As mentioned before, only saddle points (3.8a, b) are relevant which correspond
to simultaneous (in the a- and b-planes) pinch points of spatial branches coming
from the upper and lower half-planes. This requirement has been checked for selected
parameters. Examples are shown on figures 1 and 2. As may be seen on figure 1(a),
there exist two conjugate pinch-points corresponding to Im (ω′′1 ) ≈ −0.766 and the
spatial branches are symmetric with respect to the imaginary axis. This is due to
the fact that at this specific location x/t = y/t = 0 the dominant absolute mode in
the wave packet is a TR with b(s)(a(s)) = 0. Despite the complexity of the branch
structure, it is evident that the pinching criterion is satisfied in this case, as the two
spatial branches are located above and below each pinch point for Im (ω′′1 ) > −0.766
and move completely into their respective half-planes for sufficiently large values of
Im (ω′′1 ). We also note the usual exchange of branch identities as the ω-contour is
lowered to Im (ω′′1 ) < −0.766.

In figure 1(b), on the other hand, the dominant mode is almost a LR with
a(s) ≈ −0.0223 − i 0.00389 and b(s)(a(s)) ≈ −3.17 + i 0.44: the spatial branches pinch
for a small positive value of Im (ω′′1 ) ≈ 5× 10−3. For Im (ω′′1 ) > 5× 10−3 the spatial
branches are almost entirely in the left upper and in the right lower half-spaces,
respectively, thus satisfying the pinching criterion. The figure suggests that, for a
exactly zero, the spatial branches are symmetrically located in opposite quadrants of
the b-plane with the pinching branches on the real and imaginary axes. In the present
study we have however not ‘hunted’ for such a pure LR case away from the x/t-axis.

Finally, another way of following the pinching process is to vary the control
parameter R as shown on figure 2. In this case we have used the analytic dispersion
relation (3.11) to show its quality (compare with figure 1(a) obtained with the Galerkin
expansion).

3.3. Direct integration of the inverse Fourier transforms

To check the validity of the preceeding asymptotics, a direct numerical integration of
the Fourier transforms defined by equation (3.7) has been performed. To this end, the
value of ω1(a, b) is computed on a uniform grid in the plane of real wavenumbers a, b.
Only the first, fastest growing mode is retained as we are interested in the asymptotic
behaviour of the Green function. Moreover, it is possible to restrict the infinite
integration domain to a finite a, b domain corresponding to positive Im (ω1(a, b)).
The numerical integration is then performed as two one-dimensional integrals using
the D01GAF routine of the NAG library for each set of x, y and t.
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Figure 1. Simultaneous pinching of spatial TR-branches in the plane of complex wavenumber a
under the constraint (3.8a) versus Im (ω′′1 ) for P = 7, R = 0.63 and R = 1760. Group velocities
are: (a) x/t = y/t = 0, (b) x/t = 3.8, y/t = 2.5. Dashed lines represent spatial branches for

Im (ω′′1 ) > Im (ω′′1
(s)); dotted and dot-dashed lines represent spatial branches for Im (ω′′1 ) < Im (ω′′1

(s)).

We note, however, that this approach has a serious limitation: at a (x/t, y/t) inside
the growing response, the computation can only be performed for a finite time before
the numerical error becomes dominant. For locations where the packet decays, the
decaying nature of the impulse response results from the cancellation of exponentially
growing contributions to the integrals. As a consequence, as time increases, the ratio
of the impulse response to the largest contribution falls below the ‘machine epsilon’
and a complete loss of accuracy results which is dependent on the a and b grid sizes.
Hence this method becomes rapidly unusable for large Rayleigh numbers where the
exponential growth rate of unstable modes is large. To stay away from this limitation,
the grid independence of the results has consistently been checked in the present
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Figure 2. Spatial branches of the analytic dispersion relation (3.11) in the complex a-plane,
constrained by (3.8a) for P = 7, R = 0.63, x/t = y/t = 0 and Rayleigh numbers: R = 1750 (short
dashes); R = 1803 (solid line); R = 1874 (dashed line); R = 1936 (dotted line). These values of R
correspond to the same supercriticality (R/R(RB)

c − 1) as R = 1708, 1760, 1828 (≈Ra) and 1890 in
the exact problem.

study. Also, the time required for establishing the asymptotic growth rate was found
to be always sufficiently small.

4. Results
4.1. Analytical stability boundaries

From the approximate analytical dispersion relation (3.11) with R = 0 and ω = 0, one
immediately obtains the marginal Rayleigh number R(RB) for pure Rayleigh–Bénard
convection as

R(RB)(k2) =
28

27

f1f4

k2
. (4.1)

The critical wavenumber k(RB)
c =3.1165 is obtained as the real solution of ∂R(RB)/∂k2 =

0 and is very close to the exact value. The corresponding R(RB)(k2
c ) =R(RB)

c = 1749.98
is however 2.5% higher than the exact value (Manneville 1991). A quick inspection
of (3.11) shows that the same critical parameters also apply to longitudinal rolls
(a = 0, k = b) in the RBP system, which is of course well known.

From (3.11) it is also straightforward to deduce the characteristics of the marginal
state for R > 0 and transverse rolls (b = 0, k = a):

ω(TR)(a, R, P ) = 6
7
aRP

Pf4 + (7/33)f1f3

Pf4 + f1f2

≡ aRPF(k2), (4.2)

and

R(TR)(k2, R, P )−R(RB)(k2) = 4
27
R2P Φ(k2, P ), (4.3a)

Φ(k2, P ) =
[
7F(k2)− 6

] [−f2F(k2) + (2/11)f3

]
, (4.3b)
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with R(RB) given by (4.1) and F(k2) by (4.2). The critical wavenumber is obtained
from ∂R(TR)/∂k = 0 and can be written as

k2
c

(TR)
= k2

c

(RB) − R2Pϕ(R, P ).

Retaining only linear terms in R2Pϕ, one obtains

ϕ(R, P ) ≈ Φ′|k(RB)
c

[
27
4
R(RB)′′∣∣

k
(RB)
c

+ R2PΦ′′|k(RB)
c

]−1
, (4.4)

where primes denote derivatives with respect to k2. We note that, for small Prandtl
numbers, the critical wavenumber depends only weakly on Reynolds number and the
phase speed of the critical TR is therefore nearly proportional to R. For large P , on
the other hand, kc depends markedly on R and the behaviour of the critical phase
speed is more complicated.

These results may be compared to the small-R expansions of Müller (1990) and
Müller et al. (1992), noting that the latter were obtained by expanding the solution of
the full linear problem (the homogeneous version of equation (2.11a)) in powers of R
and truncating at the lowest non-trivial order, while the derivation of our analytical
results does not involve any small-R expansion (except for equation (4.4)). Their
approximate nature is entirely due to the projection of the solution, defined by the
equations (3.10a, b), onto only one pair of approximate eigenfunctions. For k fixed to
k = k(RB)

c , Müller has numerically fitted the low-R approximation of the marginal TR
frequency with

ω(TR)(k(RB)
c , P , R) = RP

2.7367P + 0.9393

P + 0.5117
, (4.5)

and found the corresponding approximate R(TR)
c to be within 1% of the exact value

in the range RP < 40. For comparison, we obtain from (4.2)

ω(TR)(k(RB)
c , P , R) = RP

2.6713P + 0.9480

P + 0.5148
, (4.6)

which displays the same functional dependence on R and P as Müller’s fit and is
numerically close. The corresponding R(TR)(k(RB)

c , P , R)−R(RB)
c obtained from (4.3) is

also in excellent agreement with Müller (1990).

4.2. The evolution of the wavepacket and transition to absolute instability

In the following, we restrict ourselves to Rayleigh numbers R > Rc for which there
exists a region of the wave packet with positive growth rate Im (ω′′n ). In the context
of (3.9), we have to determine the region of positive values of Im (ω′′n ) in the plane
(x/t, y/t). If this region includes the origin, then the instability is absolute, otherwise
it is convective. Figure 3, computed for P = 7 and R = 0.63, shows a typical evolution
of the region Im (ω′′1

(s)) > 0 as R is increased. The complex wavenumbers a(s) and b(s),

not shown in the figure, evidently vary along the isocontours of Im (ω′′1
(s)). In figure

3(a) the instability is clearly convective, i.e.Rc <R <Ra whereRa(P , R) denotes the
transition to absolute instability. Figure 3(b) shows a marginally absolutely unstable
case with R = Ra where the absolute growth rate Im (ω′′1

(s)) = 0 at x/t = y/t = 0.
Figure 3(c), finally, shows an absolutely unstable situation R > Ra where the origin
lies within the unstable disc and part of the wave packet moves upstream. We note that
between figures 3(a) and 3(c) the size of the disc with Im (ω′′1

(s)) > 0 increases, while

its centre, corresponding to the location where Im (ω′′1
(s)) is equal to the maximum

temporal growth rate which is attained for longitudinal rolls (a = 0), remains nearly
fixed.
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Figure 3. Isocontours (in increments of 0.1) of positive Im (ω′′1
(s)) (the outermost contour corresponds

to zero growth rate) in the plane (x/t, y/t) for P = 7, R = 0.63 and different Rayleigh numbers. (a)
R = 1760 (the contour marked by � corresponds to the similarly marked contour of figure 6b); (b)
R = 1827.93 ≈Ra; (c) R = 1890.

x/t y/t ω′′1
(s) (AS) ω′′1

(s)(DI)

0 0 11.9− i 0.766 12.0− i 0.827
1.41 0 7.47 7.48− i 0.0617
3.8 0 i 0.547 i 0.507
6.24 0 −7.79 −7.72− i 0.06
3.8 2.51 7.88 7.94− i 0.0575

Table 1. Comparison of absolute frequencies obtained by asymptotic method (AS) and direct
integration (DI) of Fourier transforms.

The accuracy of these results, obtained with the Chebyshev collocation method,
was checked by direct integration of the inverse Fourier transforms. A comparison at
five points of the (x/t, y/t)-plane of figure 3(a) is given in table 1. As a further check,
it was verified that the graphs of figure 3 are recovered within ‘drawing accuracy’
when using the approximate analytic dispersion relation (3.11) to determine Im (ω′′1

(s)),
provided the same supercriticality parameter R/Rc − 1 is chosen to compensate for
the high value of Rc obtained from (3.11).

To investigate the roll orientation corresponding to the absolute mode at x/t =
y/t = 0, we note that, on y/t = 0, the condition (3.8a) together with the symmetry
y → −y limits the possible solutions to either b = 0 or b real and a pure imaginary.
In our computations we find that it is always the transverse roll solution (b = 0)
which has the highest absolute growth rate at x/t = y/t = 0. This means that the
boundary of absolute instability Ra in the general case with two wave propagation
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Figure 4. Critical Rayleigh number R(TR)
c (dashed lines) and convective–absolute transition R(TR)

a

(solid lines) for TRs versus Reynolds number with: P = 0.71 (3), P = 7 (2), P = 450 (4).
Horizontal dot-dashed lines without symbols represent R(LR)

c for the first (lower line) and for the
second LR-mode (upper line).

directions coincides with the absolute instability boundary R(TR)
a for transverse rolls

(Müller 1990).
The dependence of the absolute Rayleigh number Ra on the Reynolds number is

therefore determined by TRs and is shown on figure 4 for three values of P : 0.71 (air
as in the experiment of Ouazzani et al. 1989), 7 (water, experiment of Ouazzani et
al. 1990) and 450 (silicon oil, experiment of Luijkx et al. 1981). For small Reynolds
numbers and moderate P , Ra −R(RB)

c is seen to be very nearly proportional to R2.
This is consistent with the analytical relation (3.11) which, when expanded for small
R in the manner of § 4.1, yields a proportionality to R2P times a weak function of P .
For larger R, the difference between Ra and R(TR)

c increases rapidly. With P = 7, for
instance, at R ≈ 11.8 Ra already exceeds the stability limit of the second LR-mode,
which is included on the figure for reference. For larger R2P , Ra(R) deviates more
and more from the leading-order parabolic behaviour, most markedly for the highest
Prandtl number of 450, but remains a monotonically increasing function of R. This
agrees qualitatively with the results of Müller et al. (1992) based on an amplitude
equation for TRs.

Returning to the question of the stability characteristics of longitudinal rolls, we
need to elucidate the obvious contradiction between our numerical finding that LRs
represent a convective instability for all R > 0 and the results of Brand et al. (1991),
Müller et al. (1993), Kelly (1994) (his figure 12), Tveitereid & Müller (1994) and Li
et al. (1997) who deduced a convective–absolute transition R(LR)

a (R) from amplitude
equations. This clarification is best done with the help of the approximate analytic
dispersion relation (3.11).

In the following we can restrict the analysis to the axis y/t = 0 so that ω in
(3.11) can be replaced by ω′′ + a x/t, according to the definitions of § 3.1. Since b
appears only in k2, the condition (3.8a) of zero transverse group velocity implies
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∂D/∂b = 2b∂D/∂k2 = 0. For non-transverse rolls (b 6= 0), the condition (3.8b), thus
reduces to(x

t
− 6

7
RP
) [
−f2ω

′′ + a
(
−f2

x

t
+ 2

11
RPf3

)
− iPf4

]
+
(
−f2

x

t
+ 2

11
RPf3

) [
ω′′ + a

(x
t

+ 6
7
RP
)

+ if1

]
= 0. (4.7)

In the case of purely longitudinal rolls, we must have Re (a) = 0. Moreover, it
can be shown that, according to the symmetry of the problem, b is real, implying
that k2 = b2 − Im(a)2 is also real and that ω′′ is pure imaginary. A first result for
the location of the centre of the wave packet is easily obtained for the special case
R =R(RB)

c . In this case it follows from (3.11) and (4.7) that

a = ω′′ = 0, b = k(RB)
c (4.8a)

and
x

t

∣∣∣
centre

(R(RB)
c ) = 6

7
RP

P + 0.3549

P + 0.5147
, (4.8b)

which is strictly positive for R > 0. To show that LR modes on y/t = 0 have a
positive velocity, we seek two points (x/t|+/− > 0, y/t = 0) with k2 = 0 on either side

of x/t|centre, where k2 is necessarily positive. These points are

x

t

∣∣∣
+

= 6
7
RP >

x

t

∣∣∣
centre

, Im(ω′′)|+ = −10 (4.9a)

and
x

t

∣∣∣
−

= 1
3
RP <

x

t

∣∣∣
centre

, Im(ω′′)|− = −42P , (4.9b)

independent ofR. The corresponding Im(a) are determined from ∂D/∂k2 = 0. For all
R >R(RB)

c and all P , these Im(a) were found to assume large positive values at x/t|+
and large negative values at x/t|−. A numerical survey of the x/t-axis to the right of
x/t|+ and left of x/t|− has furthermore shown that Im(ω′′) remains negative for the
entire extensive range of R, R and P which was surveyed. As the point x/t = 0 lies
to the left of x/t|−, this analysis of the approximate dispersion relation (3.11) fully
agrees with our conclusion that LRs never represent an absolute instability if R > 0.
In other words, the absolute instability boundary for LRs in the (R, R)-plane is the
axis R = 0.

The above analytical results also point to the probable cause of the erroneous
prediction of absolutely unstable LR-modes by amplitude equations. The latter have
all been obtained with a scaling that implies a slow variation (on the scale of the
transverse wavelength) of the roll amplitude along the roll direction, i.e. along x. While
this is appropriate in the immediate vicinity of the wave-packet centre, where a = 0,
we have found that the streamwise growth or decay rates ∓Im(a) are large away
from the centre, in particular at x/t = 0, which implies fast streamwise variations of
the roll amplitude. We therefore believe that the results of Müller et al. (1993), Kelly
(1994), Tveitereid & Müller (1994) and Li et al. (1997) pertaining to the absolute
instability boundary for LRs are the result of the amplitude equations in question
being used outside their range of validity.

4.3. The roll pattern within the wave packet

To further clarify the roll pattern within the asymptotic wave packet, the shape of the
wave packet at a fixed time is shown in figure 5, where the value of w(x, y, z0, t; z0) is
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y

x

Figure 5. View of the wave packet in terms of w(x, y, z0, t) in the region of the (x, y)-plane
delimited by 0 6 x 6 40, 0 6 y 6 20 at t = 5 for the parameters P = 7, R = 0.63, R = 1760.

plotted in the (x, y)-plane. This example, computed by direct inversion of the Fourier
transforms, happens to be a convective case but the roll pattern is hardly affected by
the value of R. It is obvious from figure 5 that the wave packet consists of circular
rolls around its centre. We note however, that the roll amplitude is not uniform on
each circle, particularly near the centre where the packet grows lateral ‘ears’ which
correspond to a locally higher growth rate. Since the direct inversion of the Fourier
transforms is limited to relatively small times, the wave packet of figure 5 contains
only few rolls, which does not permit the pattern close to the centre to be resolved. We
therefore proceed to a zoom of the wave-packet centre in figure 3(a) which is shown
as figure 6. In this zoom, the isophase lines of the wave packet are still circular, but the
iso-growth lines take the shape of ‘light bulbs’ near the centre. This explains the ‘ears’
in figure 5. As time progresses, the amplitude in the ‘ears’ of a circular roll becomes
exponentially larger than its amplitude on the axis y/t = 0 and in an experiment we
expect to see a roll pattern emerge in the form of the ‘lighthouse’ pattern sketched in
figure 7. We speculate that such ‘lighthouse’ patterns can merge and synchronize via
nonlinear interactions to form the LRs often observed in experiments.

While figure 6 explains the ‘ears’ of the roll pattern, it still does not resolve the very
centre, where we expect to find the most amplified temporal mode, namely a LR. A
further zoom, shown in figure 8, finally provides the detailed picture accompanied, as
usual, by some questions.

Figure 8(a) shows that in a small x/t-interval around x/t|centre LRs do prevail over
TRs, which still exist in this interval but have a smaller growth rate Im(ω′′) than the
LRs. This interval on figure 8(b) is bounded by two vertical lines at x/t ≈ 3.76 and
x/t ≈ 3.81 which correspond to points where the growth rate of a mode smoothly
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Figure 6. Isocontours of (a) Re (ω′′1
(s)) (increments of π/12) and (b) Im (ω′′1

(s)) (increments of 0.01)
in the vicinity of the centre of the wave packet for P = 7, R = 0.63, R = 1760. The symbol � marks

the contour Im (ω′′1
(s)) = 0.5 corresponding to figure 3(a) and � establishes the correspondence to

the further zoom in figure 8(b).
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Figure 7. Sketch of the expected ‘lighthouse’ roll pattern near the centre of the wave packet.
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Figure 8. Further zoom of figure 6 for the same parameter values. Contour lines in increments

of π/96 for Re (ω′′1
(s)) (a) and 0.0025 for Im (ω′′1

(s)) (b). The symbol � marks the contour

Im (ω′′1
(s)) = 0.55 corresponding to figure 6(b).

connected to pure LRs at the centre is equal to the growth rate of a mode smoothly
connected to pure TRs. These two lines appear to ‘end’ at y/t ≈ 0.026, and beyond
this y/t the isophase lines are smoothly connected. One is therefore led to speculate
that the ‘ends’ correspond to the coalescence of the two above mentioned modes but,
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owing to limited numerical accuracy, we have not been able to untangle the complex
spatial branch structure near these points.

Figure 8(b) also confirms that the maximum growth rate within the packet is indeed
associated with the temporally most amplified LR on the x/t-axis. For times much
longer than shown on figure 5, we therefore expect that a spanwise extended region
of LRs dominates the rest of the wave packet. It is interesting to estimate the time
t∗ necessary for this central region of LRs to attain a dimensional streamwise extent
of, say, 10h. From the non-dimensional ∆x/t ≈ 0.05 we obtain t∗U0/h = 200RP . This
result suggests that, at least for the present parameters, one needs a very large cell
to grow this central LR-region. Furthermore it is clear that, for any R significantly
larger than R(RB)

c , nonlinear effects will become important long before this region
develops to an observable size.

4.4. Discussion of the results in relation to experiments

To our knowledge, none of the laboratory experiments reported in the literature can
be directly compared with our results. Clearly, the presence of an inlet, outlet and
sidewalls, which we have not considered, is important. Equally or more important is
the level and nature of external perturbations imposed on the RBP cell, which are
generally not documented in experimental papers (they would also be very difficult
to measure). Therefore we are limited to an interpretation of experimental findings in
terms of the convective and absolute nature of LRs and TRs.

As long as the flow is only convectively unstable, i.e. R < Ra, and the cell aspect
ratio (its width) is sufficiently large, we expect that any reasonably random low-level
inlet perturbation generates a succession of growing wave packets which are convected
downstream, with nonlinear effects becoming effective relatively far from the inlet (cf.
Tveitereid & Müller 1994). According to the discussion of roll pattern selection in
§ 4.3, one should observe mostly longitudinal rolls sufficiently far from the inlet. This
argument is of course based on linear concepts and we cannot exclude complicated
nonlinear effects leading to a different pattern. Nevertheless, the linear scenario is
supported by the study of Fukui et al. (1983) carried out in a cell of large aspect ratio
(19.5) with air (P = 0.71) as test fluid. They made observations in a cross-section far
downstream (73 hydraulic diameters) of the inlet and observed only LRs for a range
of R and R where, according to our results, the instability is always convective.

When, on the other hand, R exceeds the absolute instability boundary Ra, the
appearance of self-excited TRs is already expected near the inlet of the RBP cell.
This is confirmed by comparing with the two-dimensional numerical experiments of
Nicolas, Mojtabi & Platten (1997). In their figure 12 they distinguish in the (R, R)-
plane between points where TRs were detected in a computational cell of finite length
L (L = 10h and 20h) without applying any forcing, and points where only pure
Poiseuille flow was observed. They found the boundary between no TRs and TRs
to fall somewhat below the curve Ra(R) determined from the amplitude equation
of Müller (1990). Actually, as shown on figure 9, the results of Nicolas et al. (1997)
line up almost perfectly with the exact Ra(R) curve for P = 6.4 (note the factor 1.5
between their Re and our R).

Probably the best laboratory experiment to test the expectation of finding TRs for
R >Ra, is the one by Ouazzani et al. (1989) who worked with an aspect ratio of 19.5
and air. Raising R for different fixed values of R, the authors observed a transition
from TRs to LRs. The roll orientation was identified by simultaneously visualizing the
flow in the (x, z)- and a (y, z)-plane (located at an unspecified x) with the help of two
laser sheets. At low Reynolds numbers, the TRs appeared close to the inlet, which is
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Figure 9. The numerically observed transition from Poiseuille flow (3) to TRs (2) adapted from
figure 12 of Nicolas et al. (1997) in relation to the curve of marginal absolute instability (solid line)
for P = 6.4.
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Figure 10. Comparison between the TR–LR transition observed experimentally by Ouazzani et
al. (1989) (3) and the curve of marginal absolute instability (solid line) for P = 0.71.

consistent with an absolutely instability. As R was raised, the TRs developed spanwise
modulations and, eventually, a clear LR pattern emerged in the entire cross-section.
This experimentally observed TR–LR transition is reproduced in figure 10, together
with the theoretical convective–absolute boundary Ra(R) for P = 0.71 from figure
4. The experimental TR–LR transitions in figure 10 clearly take place in the region
where the infinite RBP system is absolutely unstable with respect to TRs, which is
consistent with our pattern selection scenario. The experimental transition curve and
the curve Ra(R) also exhibit a qualitative similarity, but it must be emphasized that
the experimental points represent transitions between fully developed TRs and LRs
where nonlinear effects are certainly not negligible. Moreover, it is not entirely clear
from the paper of Ouazzani et al. (1989) whether at the transition point the TRs
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disappeared everywhere in the cell or whether they persisted longer near the inlet, for
instance.

A comparison with other experiments by Luijkx et al. (1981) and Ouazzani et
al. (1990) is more difficult since they used small aspect ratio cells, which have
considerably modified stability characteristics. Nevertheless, in both studies TRs were
observed for large values of the Rayleigh number which correspond to absolute
instability of the infinite RBP system. These experiments, carried out with silicon oil
(P = 450) and water (P = 7), respectively, also reveal a rapid increase of the TR–LR
transition Rayleigh number with increasing R, which is consistent with the strong
Prandtl number dependence of Ra(R) in figure 4. From these generally encouraging
comparisons it is clear that, in order to establish a firm and quantitative link between
the present theory and experiments, more experimental work in large RBP cells with
carefully controlled external perturbations is needed.
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